1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
marjoriez15209 edited this page 1 week ago
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to develop, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement finding out to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support knowing (RL) step, which was used to improve the model's actions beyond the basic pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately boosting both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, implying it's equipped to break down complex questions and factor through them in a detailed way. This directed reasoning process enables the design to produce more precise, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation design that can be integrated into numerous workflows such as representatives, rational reasoning and information interpretation tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, enabling effective inference by routing inquiries to the most pertinent expert "clusters." This approach allows the model to focus on different issue domains while maintaining overall efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient designs to imitate the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging material, and examine models against key safety criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create several guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, create a limitation increase request and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful material, and evaluate designs against essential security requirements. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic circulation includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.

The design detail page provides important details about the design's abilities, rates structure, and implementation standards. You can find detailed usage guidelines, consisting of sample API calls and code bits for integration. The model supports numerous text generation tasks, including material production, code generation, and question answering, utilizing its reinforcement finding out optimization and CoT thinking capabilities. The page also consists of implementation options and licensing details to help you get begun with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be triggered to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a number of circumstances (in between 1-100). 6. For Instance type, pick your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role authorizations, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you might want to examine these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the release is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive user interface where you can try out different prompts and adjust model parameters like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For example, material for reasoning.

This is an outstanding method to explore the model's thinking and text generation abilities before incorporating it into your applications. The play area supplies instant feedback, assisting you comprehend how the design reacts to various inputs and letting you fine-tune your prompts for optimal outcomes.

You can rapidly check the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and setiathome.berkeley.edu ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up reasoning parameters, and sends out a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 convenient techniques: utilizing the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser shows available designs, with details like the supplier name and model capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows key details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if suitable), suggesting that this design can be registered with Amazon Bedrock, 89u89.com allowing you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the design details page.

    The design details page consists of the following details:

    - The model name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you deploy the model, it's advised to review the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with release.

    7. For Endpoint name, utilize the instantly generated name or develop a custom-made one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of circumstances (default: 1). Selecting proper circumstances types and counts is essential for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the model.

    The release process can take several minutes to complete.

    When release is complete, your endpoint status will change to InService. At this moment, the design is all set to accept reasoning demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, setiathome.berkeley.edu which will display appropriate metrics and status details. When the release is total, you can conjure up the model utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the required AWS consents and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent unwanted charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments.
  5. In the Managed releases area, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct innovative solutions utilizing AWS services and sped up compute. Currently, he is focused on developing techniques for fine-tuning and enhancing the inference performance of big language models. In his downtime, Vivek delights in treking, viewing films, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building solutions that assist clients accelerate their AI journey and unlock service value.